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ON THE ANALYSIS OF THIN POROUS COATINGS* 

E.V. KGVALENKO 

A plane contact problem is considered for an elastic layer whose pores 
are filled with a viscous incompressible fluid. It is shown that in the 
case of a relatively small layer (coating) thickness its rheological 
properties can be modelled by equations of the Fuss-Winkler foundation 
with a bed operator coefficient (the analogue of the hereditary 
elasticity equations). The case of the impression of a parabolic stamp 
in a thin porous-elastic coating is investigated in detail. Asymptotic 

formulas are obtained for the fundamental contact interaction 
characteristics, namely, the settling of the foundation under the stamp, 
the contact domain, and the contact pressure, which hold for short and 
long times. 

The experience of producing and using antifriction coatings in modern engineering results 
in the need to control their structure and functional properties. Among such coatings one 
should mention primarily porous-elastic coatings whose surface is antifrictional by virtue of 
its ability to absorb oil and then to release it under loading. Moreover, the theory of the 
deformation of porous-elastic bodies is convenient for describing a number of features of 
material production by porous metallurgy methods /l/e The principles of this theory were 
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developed quite long ago /2/, but the solution of specific mixed problems has received insuf- 
ficient attention. In the main these are problems of the theory of the consolidation of water- 
saturated media /l, 3, 41, where a porous-elastic half-plane or half-space were selected as 
the foundation. 

Within the framework of the plane theory of elasticity 
probltm of the action of a normal load Q(X) H(t) (H(t) 

(plane strain) we examine.the 
is the Heaviside function) distributed 

over a section 15 1 Qa on the upper boundary of a porous elastic layer (O,<y<k) clamped 
rigidly along the foundation. We will describe the rheological properties of the medium by 
equations of the Biot model /2/ by considering the motion of a viscous (n is the coefficient 
of viscosity) compressible fluid in the pores subject to the Darcy filtration law with per- 
meability factor k 

~Au f (p + h,)grad e - u&i grad 5 = 0 

Here u = {u, v}, u 
fluid, respectively, P 
is the stress tensor in 

p = -_aiWe + MC, e = divu, 5 = f div(u -U) (1.3) 

zi, = 2peil + 6,j (hoe - akff), A, = h + a%@ (W 

are the displacement vectors of points of the elastic skeleton and the 
is the hydrostatic fluid pressure in the pores, f is the porosity, 'Cej 
the porous medium, bij is the strain tensor in the elastic skeleton, 

and n, h, a and M are the elastic coefficients of the porous medium whose physical meaning 
and methods of determination are considered in /5/. 

We assume the layer surface y = k to be completely permeable and its foundation to be 
absolutely impermeable. Then the boundary conditions of the problem formulated can be written 
in the form 

y = k: p = 0, z12 = 0 ( 1 x J < m) (1.5) 

z I2 = -9 (4 H (t) ( 15 I < 4, T22 = 0 ( lx 1 > a) 

y = 0: Et = v = apiay = 0 ( Ix I< cm) 

where the stresses in the layer equal zero at infinity while the initial condition correspond- 
ing to no instantaneous bulk strains in the skeleton has the form 

e (x, Y, 0) = 0 (1.6) 

To solve problem (l.l)-(1.6), just as was done in /6/, we introduce two unknown functions 

E (s, y, 2) and S(x, y) associated with the displacement vector components in the elastic 
skeleton u, v and the pressure p by the expressions 

11 = E,s + ys.,, v = E,, + YSa __ s 
pa = (2~ + h) AE -I- 2@,,, e = AE 

substituting (1.7) into ( 1.11, (1.2) and (1.4) we obtain 

(1.7) 

(1.8) 

(1.9) 

Now using (1.7) and (1.9), we convert the boundary conditions (1.5) and the initial con- 
dition (1.6) into the form 

y = k: (2~ + h) AE + ZpS,, = 0, E,,, + kS,zc, = 0 

-Es,, + kS,,, - s,, = -v2q (I) p-1 [(if (5 + a) + 

H (5 - a)1 H it) 

y=O: E ,x = E,, - S = (2~ + A) AE,,, + 21”5,,, =O( lXl<~I 
t = 0: BE = 0 

(1.10) 

(l.li) 

The boundary-value problem (1.8)-(1.11) can be solved exactly by using Fourier integral 
transformations in the x coordinate and the Laplace-Carson transformation in time t /7/. 
Omitting the computations, we obtain 
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(1.12) 

K (IL, s) = D, (u, s)i[uD, (u, s)l 
D, (u, s) m= 2uz sh u - uy sh y I- ‘/,e&ms ch y + 

u3y-’ sh2 u sh y - l!,~-’ [y2 - v (1 - Y)-WI sh 2u ch y 

D, (u, s) 4u* (ch u - u sh u - ch2 u ch y) $ uy-’ sh y x 

(19 + y”) (sh 2u + 2~) - ~-lms ch y (u” + ch2 u) - 

4~ (m-W ch u [2u (ch u ch y - 1) - 

(u” + y”) y-’ sh u sh ~1 
yz = u2 t ms, m :-- hVc, F = ‘1, (1 - 2~) (1 - v)-’ 

for the Laplace-Carson transforms of the vertical displacement of points of the upper face of 
the layer (v is Poisson's ratio of the skeleton material). 

Solving the problem formulated for t -= 0 we write 

u (J, h, 0) = - G s’ dW(++E (1.13) 

-a 

z (2xsh 2U - 411) C"S UZ da 
k(z) = \ (2xch2u+4ua+++1)~ 

x=3--/lv 

b 

We introduce the parameter A = ha-r into the considerations and we will assume A< 1. 
Furthermore, simplifying the relations(l.12) and (1.131 asymptotically, i.e., neglecting terms 
of the order of ,Y2 and higher, that characterise the deformation of the elastic skeleton in 
them. we find 

uL (x, h, s) = - ‘y$r Q (4, c(i.,h,o)=-+q(r) (1X1<(a) (1.14) 

We conclude from (1.14) that a relatively thin porous elastic layer behaves under com- 
pression in the same way as a Fuss-Winkler foundation with a bed operator coefficient whose form 
can be determined by applying an inverse Laplace-Carson transformation to both sides of the 
first equality in (1.14). Taking account of the second relationship in (1.14), we will have 

(@2 (U? 4 is the theta function). The solution for an instantaneous distributed load 

--4 (r) 6 (Q applied to a section Ixl<a of the layer boundary y -- h is obtained 
differentiating (1.15) with respect to t 

where 

e2 (0, t) = I Zexp( - n?/4), t -> cw 

(nt)-“2, t --f 0 

(1.15) 

(1.16) 

(1.17) 

2. Knowing the function v,~(x, h, t) describing the settling of points of the foundation 
under an instantaneous distributed load, we study the contact problem of the impression of a 
parabolic stamp y = za(2R)-' by a force P(t) into the surface of a thin elastic porous layer 
(l.l)-(1.4) clamped rigidly along the lower face. We assume here that the force P(t) varies 
with time in the same manner as the halfwidth of the contact domain a (t) t of the stamp with 
the foundation, increases with time. In this case a function t = b(u) inverse to a =- a (t) 
exists and its uniqueness enables us to use the quantity a (t) as a time parameter /8/. 
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Introducing the dimensionless variables x* = .zR-‘, t* = tm-1 and using the notation 

a* (t*) zz a (2) R-l, fP (t*) : f3 [a @)I R-l, q* (x*, t*) = 
~hq [x, a (t)l (pR)-‘, N, (t*) = E/d’ [a @)I W)-’ 

(we omit the asterisk here), we can write the integral equation of the problem formulated in 

the unknown contact pressure g(x, t) under the stamp in the form 

(2.1) 

(0 s 5 < a (t), 0 < t < x), k (t) := O2 (0, t) 

The quasi-equilibrium condition 

N&)=2jq@J~~~ (2.2) 
0 

and the relationship 

4! (2, t) = 0 (5 > = 0)) (2.3) 

for finding the unknown domain of stamp contact with the porous foundation must be added to 
(2.1) to close the formulation of the problem. 

Note that (2.3) enables us to rewrite the integral Eqs.(2.1) in the form of the following 
system: 

P-4) 

(2.5) 

to solve which we use a well-known algorithm /8/. 
Setting x = u(t) in (2.41 and taking condition (2.3) into account, we determine the 

foundation settling function 

p (t) = ‘!,I (t) (2.6) 

We integrate both sides of (2.1) with respect to CC between the limits 0 and U (t). Using 
expressions (2.2) and (2.6) and changing the order o.f integration in the integral obtained, 
which is legitimate /9/ since the contact domain is described by a function which increases 
monotonically with time, we will have 

(2.7) 

Furthermore, limiting ourselves to the modification N,(t) = N, = con&, by taking account 
of (1.17) we find from (2.7) 

.S (t) = 3N, [ 1 _ _$_ 9 e=P I- iTa cn + l/d’tl ] 
n=o (n + ‘IO’ (2.8) 

{i + &r-Z [ 1 - exp (- A/4)]} (t -9 co) 

The solution of the system of integral Eqs.(2.4) and (2.5) is obtained in /9f for suf- 
ficiently long times and has the form 

g(xT t, = ( 

I(O,t)-t %[a"@)-4 (O,<~=G%) (2.9) 

Z@(z)), t) (a. <s <a(t)) 

I (a, t) = - i exp [- (2 + 1/4xa) (t - z)] [a* (z) - .Za] dr 

6 (x) Ln-a In 11 + '/,lc2(1 - V$%v~-~)] 
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AS t-+-o the solution can be found by using the Laplace-Carson integral transform with 
respect to time. Omitting the computations we write it in the form of (2.9), where 

(X10) 

b (cc) = ‘/‘i-c (“i3sW,-1 - 1)s 

Therefore, (2.6) and (2.8)-(2.10) yield the solution of the problem of the impression of 
a parabolic stamp into a thin porous elastic coating as t-+m and t-to. 

Let us clarify the following question: do the asymptotic formulas constructed for short 
and long times merge? Values of the quantities Q (tJ (3iV0) -'/. x 103 are presented in the table 
according to the exact solution (first line), computed by means of (2.8) as t-0 (the second 
line) and t--rw (the third line). It is seen that the asymptotic form for short times behaves 
well up to practically t=l (the error of this solution as compared with the exact solution 
for t--i does not exceed 3.2%). At the same time, the asymptotic solution as t-m can be 
utilized when l> 0.7 (the maximum error of the results is not greater than 3.6%). 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
8. 

9. 
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